Simulating altimetric data with SMRT

Sponsored by : Constraints of the space Agency European Space Agency

Bremerhaven, Jul 2023

Need a specific RT solver for the altimetry because the equation to be solved is different.

The altimetric solver fits well in the overall SMRT structure, despite its specificities.

<u>The solver is: nadir_lrm_altimetry</u>

Based on Brown, 1977 (surface only) and Adams and Brown, 1998 (surface+volume)

Limitations:

- nadir altimetry

- First order scattering. No multiple scattering.

- Low Resolution Mode (LRM). No SAR InSAR processing yet.

- Gaussian surface = no complex surface topography, no POCA. satellite ok. airborne=~~

bands S, C, Ku ok. Ka ~~

Sentinel 3 is some places only.

```
sea-ice ok, ice-sheet ~~
```

SMRT's nadir altimetry model computes the waveforms in two steps:

<u>1- compute the **vertical** profile of backscatter</u>

Sigma = f(z)

- backscatter from the surface
- backscatter from the volume (scattering)
- backscatter from the inter-layer interfaces
- backscatter from the substrate (bottom interface)

Main approx: 1st order backscatter only

<u>2- distribute in time accounting for the **horizontal** <u>spread/delay of the wavefront</u></u>

- Brown 1977's model \rightarrow flat or tilted surface.
- « convolution with the pulse surface response »

Main approx: LRM model, no complex topography

Radar wavefront Surface Layered snowpack

Sigma = f(t)

More details in Larue et al. 2021

Need to solve the time-dependent RT equation

$$\frac{1}{c(\mathbf{r})} \frac{\partial}{\partial t} I'(\theta, \phi, \mathbf{r}, t) + \frac{\partial}{\partial s} I'(\theta, \phi, \mathbf{r}, t) = -\kappa_{e}(\mathbf{r}) I'(\theta, \phi, \mathbf{r}, t)$$
$$+ \frac{1}{4\pi} \int_{4\pi} P(\theta, \theta', \phi - \phi', \mathbf{r}) I'(\theta', \phi', \mathbf{r}, t) d\Omega'$$

First, need to define a vertical grid of equal time. Depends on the speed of wave \rightarrow depends on refractive index.

Then compute the backscatter from the volume e.g. for layer n

$$I_{n,vol}^{1^{st}}(z=0,t) = E_0 \left(t - 2\sum_{n'=1}^{n-1} \frac{h(z_{n'})}{c(z_{n'})} \right) \frac{1}{n(z_n)} \frac{P(0,0,\pi,z_n)}{4\pi}$$

$$\frac{1 - exp(-2\kappa_e(z_n)h(z_n))}{\kappa_e(z_n)} exp\left(-2\sum_{n'=1}^{n-1} \kappa_e(z_{n'})h(z_{n'}) \right) \prod_{i=1}^{N} T(z_i)^2.$$
Backscatter by the Attenuation by Attenuation by

Backscatter by th actual layer

Attenuation by upper volume

Attenuation by upper interfaces

Similar for internal interfaces and the surface: see Larue et al. 2021

Illustrations: a snowpack with 4 layers with increasing scattering strength

Larue et al. 2012

Acquisition of in-situ data during two traverses in East Antarctica (2016 and 2019) and at Concordia station

Name	Latitude	Longitude	Slope	$\sigma_{\rm surf}$	T	MSS	SSA	ρ
$\mathrm{stop}5^A$	-68.75	137.44	0.02	0.31	-37.2	0.03	11.6	448
$\mathrm{charcot}^A$	-69.38	139.02	0.13	0.33	-37.9	0.02	12.0	433
$\mathrm{stop}0^A$	-69.64	135.28	0.01	0.18	-41.1	0.02	12.4	437
$\mathrm{stop}2^A$	-69.95	138.55	0.05	0.34	-40.4	0.03	12.4	449
$\operatorname{stop} 3^A$	-70.06	141.20	0.21	0.45	-38.9	0.05	11.5	446
$ago5^E$	-77.24	123.48	0.09	0.32	-54.4	0.01	7.4	361
$paleo^E$	-79.85	126.20	0.08	0.30	-50.5	0.01	7.7	392

(a) *ago*5^E site

(b) stop2^A site

Results for AltiKa, ENVISAT and Sentinel 3A (LRM mode)

Total backscatter:

Clear increasing trend for the coastal regions to the interior

The model says:

- surface roughness is the main factor (smoother in the interior)
- grain size, density and temperature are also significant factors

Difficulties: Altimeters are not radiometrically calibrated sensors. Must scale the results

Waveforms:

Contributions of the surface, volume, inter-layer interfaces:

- The surface backscatter dominates at all the frequencies

- Volume scattering is larger at Ka-band ... but penetration depth is much less than at the lower frequencies . With pd ~0.5 m, the volume echo comes very closely after the surface echo.

- in Ku band, a *large* penetration depth but a *small* volume contribution
- in Ka band, a *small* penetrationdepth but a *large* volume contributuon

\rightarrow Uncertain consequences for the elevation bias.

Elevation bias simulations:

- same order of magnitude at Ku and Ka bands

- the bias does not depend on the same factors at both bands (roughness, grains, ...)

Current applications:

- validation in Antarctica, published.
- validation on frozen lakes
- validation on sea-ice

Next step, it is possible to implement:

- SAR / InSAR simulator. Important for S3 and Cristal.
- Account fro real topography (DEM based). Important for the ice-sheets
- Multiple scattering through Monte-Carlo RT simulation. May be important for Ka altimetry