SMRT Microstructure

Henning Löwe

WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

 $3^{\rm rd}$ SMRT Training School, AWI, 06-08 July 2023

Microstructure in SMRT

Snow microstructure as seen by X-ray tomography:

► A key driver for developing SMRT: Faithful representation of microstructure

Recap from EM lecture: Where microstructure matters

IBA phase function: (cf. yesterday)

$$p(\vartheta,\varphi)_{1-2 \text{ frame}} = M(|k_d|)k_0^4 \sin^2 \chi(\epsilon_2 - \epsilon_1)^2 Y^2(\epsilon_1, \epsilon_2)$$
(1)

Angular distribution of scattered intensity

Recap from EM lecture: Where microstructure matters

IBA phase function: (cf. yesterday)

$$p(\vartheta,\varphi)_{1-2 \text{ frame}} = M(|k_d|)k_0^4 \sin^2 \chi(\epsilon_2 - \epsilon_1)^2 Y^2(\epsilon_1, \epsilon_2)$$
(1)

Angular distribution of scattered intensity

Microstructure term

$$M(|\mathbf{k}_{\mathrm{d}}|) = \frac{\widetilde{C}(|\mathbf{k}_{\mathrm{d}}|)}{4\pi}.$$
(2)

• defined by the Fourier transform $\widetilde{C}(|k_d|)$ of the auto-correlation function (ACF).

Recap from EM lecture: Where microstructure matters

IBA phase function: (cf. yesterday)

$$p(\vartheta,\varphi)_{1-2 \text{ frame}} = M(|k_d|)k_0^4 \sin^2 \chi(\epsilon_2 - \epsilon_1)^2 Y^2(\epsilon_1, \epsilon_2)$$
(1)

Angular distribution of scattered intensity

Microstructure term

$$M(|\mathbf{k}_{\mathsf{d}}|) = \frac{\widetilde{C}(|\mathbf{k}_{\mathsf{d}}|)}{4\pi}.$$
(2)

• defined by the Fourier transform $\widetilde{C}(|k_d|)$ of the auto-correlation function (ACF).

Goal of the lecture

Understand the ACF and its implications for scattering

Motivation

ACF: Definition and properties

ACF for spheres: Linking IBA and QCA

ACF reinterpreted: The microwave grain size

Definition of the ACF for random media

Indicator function of the ice phase:

$$\mathcal{I}(\mathbf{x}) = egin{cases} 1, & ext{if } \mathbf{x} ext{ is in ice} \ 0, & ext{if } \mathbf{x} ext{ is in air} \end{cases}$$

• A μ CT image is a discrete version of it

Definition of the ACF for random media

Indicator function of the ice phase:

$$\mathcal{I}(\mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{x} \text{ is in ice} \\ 0, & \text{if } \mathbf{x} \text{ is in air} \end{cases}$$

• A μ CT image is a discrete version of it

Auto-correlation function (ACF) and Fourier transform (3D):

$$C(\mathbf{r}) = \overline{(\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)}$$
$$\widetilde{C}(\mathbf{k}) = \int d\mathbf{r} \exp(-i\mathbf{r} \cdot \mathbf{k})C(\mathbf{r})$$

Spectrum of (micro-scale) density fluctuations
 SMRT involves only *C*(|*k*|) (isotropy)

Basic geometrical properties of the ACF:

Special values and geometrical meaning:

Link to density:

$$C(0) = f_2(1-f_2)$$

Link to specific surface area (SSA):

$$C'(0) = 1/\ell_p$$
$$= \frac{\mathrm{SSA}\rho_{\mathrm{ice}}f_2}{4}$$

 ℓ_p : Porod length, f_2 : ice volume fraction

Basic geometrical properties of the ACF:

Special values and geometrical meaning:

Link to density:

(

$$C(0) = f_2(1-f_2)$$

Link to specific surface area (SSA):

$$\begin{aligned} \mathcal{L}'(\mathbf{0}) &= 1/\ell_p \\ &= \frac{\mathrm{SSA}\rho_{\mathrm{ice}}f_2}{4} \end{aligned}$$

 ℓ_p : Porod length, f_2 : ice volume fraction

Implication:

• Density and SSA characterize only the behavior of $C(r \approx 0)$

Density and SSA not sufficient to characterize MW scattering

From μ CT images to SMRT simulations

Computing the ACF for a 3d image:

• $C(\mathbf{r})$ is a discrete convolution of the image with itself (N voxels)

$$C(\mathbf{r}) = \overline{(\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)}$$

$$\approx \frac{1}{V} \int d\mathbf{x} \ (\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)$$

$$\approx \frac{1}{N} \ (\mathcal{I}(\mathbf{x}) - f_2) * (\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)$$

$$\approx \frac{1}{N} \ \mathcal{F}^{-1} \parallel \mathcal{F}[\mathcal{I}(\mathbf{x}) - f_2] \parallel^2$$

From μ CT images to SMRT simulations

Computing the ACF for a 3d image:

• $C(\mathbf{r})$ is a discrete convolution of the image with itself (N voxels)

$$C(\mathbf{r}) = \overline{(\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)}$$

$$\approx \frac{1}{V} \int d\mathbf{x} \ (\mathcal{I}(\mathbf{x}) - f_2)(\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)$$

$$\approx \frac{1}{N} \ (\mathcal{I}(\mathbf{x}) - f_2) * (\mathcal{I}(\mathbf{x} + \mathbf{r}) - f_2)$$

$$\approx \frac{1}{N} \ \mathcal{F}^{-1} \parallel \mathcal{F}[\mathcal{I}(\mathbf{x}) - f_2] \parallel^2$$

Fitting $C(\mathbf{r})$ to an ACF model:

Yields parameters to initialize SMRT microstructure (=Parametric ACF model)

Parametric ACF models required for the numerics

(smrt.microstructure)

Model	Origin	# Param's	Defined by
Exponential	MEMLS	1	$A_{ m ex}(r) = \exp(-r/l_{ m ex})$
Teubner–Strey	Microemulsions	2	$A_{ ext{TS}}(r) = \exp(-r/\xi_{ ext{TS}}) rac{\sin(2\pi r/d_{ ext{TS}})}{(2\pi r/d_{ ext{TS}})}$
Independent sphere	Sparse media	1	a <i>spherical</i> ACF
Sticky hard spheres	QCA/DMRT	2	(later)
Gaussian random field	3D reconstruction	2	an auxiliary ACF
Unified models	[Picard et al 2022]	2	(later)

where C(r) = C(0)A(r).

Comparison of different ACF models

Fitting the same image to different ACF models:

- Clear difference in performance
- EXP less flexible than TS (evident)
- Profound impact on MW modeling (cf. right)
- More on this \rightarrow practical

Outline

Motivation

ACF: Definition and properties

ACF for spheres: Linking IBA and QCA

ACF reinterpreted: The microwave grain size

Sticky hard spheres: The basis of QCA and DMRT

Determined by volume fraction f₂, diameter d, and stickiness τ [BAXTER, 1967]
 Example realizations (identical f₂, d, i.e. same SSA):

Main effect of stickiness τ :

 \blacktriangleright Clustering \rightarrow new structural length scales \rightarrow impact on scattering

How can sphere models be related to C(r)?

Commonly formulated in different types of correlation functions:

Pair correlation function: $g(\mathbf{r})$ (\rightarrow Prob. that \mathbf{r} connects the *centers* of two spheres)

Two-point correlation function: C(r)(\rightarrow Prob. that r connects the *interior* of two spheres

Relating two-point correlations and pair correlations:

Exact result for arbitrary (hard) sphere packings:

$$C(\mathbf{r}) = nv_{\rm int}(\mathbf{r}) + n^2 (v_{\rm int} * g)(\mathbf{r})$$

 \triangleright $v_{int}(r)$: Intersection volume of two spheres, *n*: number density of spheres

Relating two-point correlations and pair correlations:

Exact result for arbitrary (hard) sphere packings:

$$C(\mathbf{r}) = nv_{\rm int}(\mathbf{r}) + n^2 (v_{\rm int} * g)(\mathbf{r})$$

 \triangleright $v_{int}(r)$: Intersection volume of two spheres, *n*: number density of spheres

Equivalent in Fourier space:

$$\widetilde{C}(\mathbf{k}) = nP(\mathbf{k})S(\mathbf{k})$$

▶ $P(\mathbf{k})$: form factor, $S(\mathbf{k})$: structure factor [STELL & TORQUATO 1982]

Relating two-point correlations and pair correlations:

Exact result for arbitrary (hard) sphere packings:

$$C(\mathbf{r}) = nv_{\rm int}(\mathbf{r}) + n^2 (v_{\rm int} * g)(\mathbf{r})$$

▶ $v_{int}(r)$: Intersection volume of two spheres, *n*: number density of spheres

Equivalent in Fourier space:

$$\widetilde{C}(\mathbf{k}) = nP(\mathbf{k})S(\mathbf{k})$$

▶ $P(\mathbf{k})$: form factor, $S(\mathbf{k})$: structure factor [STELL & TORQUATO 1982]

This link allows to:

- implement DMRT's sticky hard spheres in IBA
- compare QCA scattering formulations with IBA
- fit μ CT images to sticky hard spheres (not worth it)

Comparison of IBA and QCA-CP

Scattering coefficient κ_s (low freq):

$$\kappa_{s}^{\text{IBA}} = \frac{2}{9}k_{0}^{4}a^{3}\phi_{2}f^{\text{IBA}}(\varepsilon_{1},\varepsilon_{2},\phi_{2})\widetilde{C}(0)$$

$$\kappa_{s}^{\text{QCA-CP}} = \frac{2}{9}k_{0}^{4}a^{3}\phi_{2}f^{\text{QCA-CP}}(\varepsilon_{1},\varepsilon_{2},\phi_{2})\widetilde{C}(0)$$

Same microstructure term $\tilde{C}(0)$

Main message:

- ▶ IBA \approx QCA-CP (shortrange) for low frequency
- IBA \approx QCA (longrange) for higher frequency

Outline

Motivation

ACF: Definition and properties

ACF for spheres: Linking IBA and QCA

ACF reinterpreted: The microwave grain size

Snow field measurements:

- ▶ Often no μ CT \Rightarrow no ACF
- Always SSA estimates (DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)

Snow field measurements:

- ▶ Often no μ CT \Rightarrow no ACF
- Always SSA estimates (DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)

• Go from SSA (or
$$\ell_p$$
) to ACF parameters via:

 $\xi = \text{some factor} \cdot \ell_p$

For the exponential ACF [MÄTZLER 2002]

$$d_{SHS} =$$
another factor $\cdot \ell_p$

For the Sticky Hard Spheres ACF [BRUCKER 2011, ROYER 2017,...]

Snow field measurements:

- ▶ Often no μ CT \Rightarrow no ACF
- Always SSA estimates (DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)

Procedure in the past:

• Go from SSA (or
$$\ell_p$$
) to ACF parameters via:

 $\xi = \text{some factor} \cdot \ell_p$

For the exponential ACF $\left[\mathrm{M\ddot{a}tzler}~2002\right]$

$$d_{SHS} =$$
another factor $\cdot \ell_p$

For the Sticky Hard Spheres ACF [BRUCKER 2011, ROYER 2017,...]

0.05 0.10 0.15 0.20 0.25 0.30 0.35

 $\ell_p \ (mm)$

0.05

0.00

0.40

Snow field measurements:

- ▶ Often no μ CT \Rightarrow no ACF
- Always SSA estimates (DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)

Procedure in the past:

• Go from SSA (or
$$\ell_p$$
) to ACF parameters via:

 $\xi = \text{some factor} \cdot \ell_p$

For the exponential ACF $\left[\mathrm{M\ddot{a}tzler}~2002\right]$

 $d_{SHS} = ext{another factor} \cdot \ell_p$

For the Sticky Hard Spheres ACF $[{\it Brucker}~2011,~{\it Royer}~2017,...]$

Empirical. ACF-model specific.

What we could do instead

Scattering coefficient in IBA

 $\kappa_s \sim k^4 \widetilde{A}(k)$ k : wavenumber $\widetilde{A}(k)$: Fourier Transform of the ACF

Dimension of $\widetilde{A}(k)$: m³

What we could do instead

Scattering coefficient in IBA

$$\kappa_s \sim k^4 \widetilde{A}(k)$$

 k : wavenumber
 $\widetilde{A}(k)$: Fourier Transform of the ACF
Dimension of $\widetilde{A}(k)$: m³

Suggests definition of microwave grain size:

$$\ell_{\rm MW} := \widetilde{A}(0)^{1/3} = \left(4\pi \int_0^\infty dr r^2 A(r)\right)^{1/3}$$

[Picard et al, 2022]

What we could do instead

Scattering coefficient in IBA

$$\kappa_s \sim k^4 \widetilde{A}(k)$$

 k : wavenumber
 $\widetilde{A}(k)$: Fourier Transform of the ACF
Dimension of $\widetilde{A}(k)$: m³

Suggests definition of microwave grain size:

$$\ell_{\rm MW} := \widetilde{A}(0)^{1/3} = \left(4\pi \int_0^\infty dr r^2 A(r)\right)^{1/3}$$

[Picard et al, 2022]

A little algebra reveals:

 $\ell_{\rm MW}:=\widetilde{\textit{A}}(0)^{1/3}~$ zero frequency Fourier transform of the ACF

A little algebra reveals:

- $\ell_{\rm MW}:=\widetilde{\textit{A}}(0)^{1/3}~$ zero frequency Fourier transform of the ACF
 - = ... rewritten as the Laplace transform of the ACF

A little algebra reveals:

- $\ell_{\rm MW}:=\widetilde{\textit{A}}(0)^{1/3}~$ zero frequency Fourier transform of the ACF
 - = ... rewritten as the Laplace transform of the ACF
 - = ... related to the Chord length distribution (CLD)

A little algebra reveals:

$$\begin{split} \ell_{\rm MW} &:= \widetilde{A}(0)^{1/3} & \text{zero frequency Fourier transform of the ACF} \\ &= \dots & \text{rewritten as the Laplace transform of the ACF} \\ &= \dots & \text{related to the Chord length distribution (CLD)} \\ &= \mathcal{K}\ell_{\rm D} & \text{admits a geometrical interpretation} \end{split}$$

A little algebra reveals:

$$\begin{split} \ell_{\rm MW} &:= \widetilde{A}(0)^{1/3} & \text{zero frequency Fourier transform of the ACF} \\ &= \dots & \text{rewritten as the Laplace transform of the ACF} \\ &= \dots & \text{related to the Chord length distribution (CLD)} \\ &= \textit{K}\ell_{\rm p} & \text{admits a geometrical interpretation} \end{split}$$

Polydispersity:

$$\textit{\textit{K}} = \left(\frac{\mu_4}{24\mu_1^4} - \frac{\mu_2\mu_3}{6\mu_1^5}\phi + \frac{\mu_2^3}{8\mu_1^6}\phi^2\right)^{1/3}(1-\phi)^{-2/3}$$

(ϕ : relative density, μ_i : moments of the CLD, approximation based on [ROBERTS 1999])

A little algebra reveals:

$$\begin{split} \ell_{\rm MW} &:= \widetilde{A}(0)^{1/3} & \text{zero frequency Fourier transform of the ACF} \\ &= \dots & \text{rewritten as the Laplace transform of the ACF} \\ &= \dots & \text{related to the Chord length distribution (CLD)} \\ &= \textit{\textit{K}} \ell_{\rm p} & \text{admits a geometrical interpretation} \end{split}$$

Polydispersity:

(ϕ : relative density, μ_i : moments of the CLD, approximation based on [ROBERTS 1999])

What we gained:

Geometrical link: Low frequency microwave scattering \longleftrightarrow Optical measurements

Exploiting the microwave grain size with SMRT

(cf. smrt.microstructure.unified*)

From SSA to microwave predictions:

- Inverse: Retrieval of polydispersity
- Forward: Use an educated guess for K

Exploiting the microwave grain size with SMRT

(cf. smrt.microstructure.unified*)

From SSA to microwave predictions:

- Inverse: Retrieval of polydispersity
- \blacktriangleright Forward: Use an educated guess for K

Summary

The two-point (or autocorrelation) function of snow:

- Dictates microwave scattering
- ▶ Defines microwave grain size and reveals difference to optical grain size

Summary

The two-point (or autocorrelation) function of snow:

- Dictates microwave scattering
- Defines microwave grain size and reveals difference to optical grain size

Microstructure in SMRT:

- Represented by parametric ACF forms
- An SMRT snowpack can comprise layers with different ACFs
- ▶ New ACF models can be easily added by implementing $C(r)/\widetilde{C}(k)$
- Not explored yet: Using measured ACF data directly (need for regularization)

Thank you for your attention.