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Microstructure in SMRT

Snow microstructure as seen by X-ray tomography:

I A key driver for developing SMRT: Faithful representation of microstructure



Recap from EM lecture: Where microstructure matters

IBA phase function: (cf. yesterday)

p (ϑ, ϕ)1-2 frame = M(|kd |)k40 sin2 χ(ε2 − ε1)2 Y 2(ε1, ε2) (1)

I Angular distribution of scattered intensity

Microstructure term

M(|kd|) =
C̃ (|kd |)

4π
. (2)

I defined by the Fourier transform C̃ (|kd |) of the auto-correlation function (ACF).

Goal of the lecture
I Understand the ACF and its implications for scattering
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Outline

Motivation

ACF: Definition and properties

ACF for spheres: Linking IBA and QCA

ACF reinterpreted: The microwave grain size



Definition of the ACF for random media

Indicator function of the ice phase:

I(x) =

{
1, if x is in ice

0, if x is in air

I A µCT image is a discrete version of it

Auto-correlation function (ACF) and Fourier transform (3D):

C (r) =
(
I(x)− f2

)(
I(x + r)− f2

)
C̃ (k) =

∫
dr exp(−ir · k)C (r)

I Spectrum of (micro-scale) density fluctuations

I SMRT involves only C̃ (|k |) (isotropy)
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Basic geometrical properties of the ACF:

Special values and geometrical meaning:
I Link to density:

C (0) = f2(1− f2)

I Link to specific surface area (SSA):

C ′(0) = 1/`p

=
SSAρicef2

4

`p: Porod length, f2: ice volume fraction

(schematic)

Implication:

I Density and SSA characterize only the behavior of C (r ≈ 0)

I Density and SSA not sufficient to characterize MW scattering
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From µCT images to SMRT simulations

Computing the ACF for a 3d image:

I C (r) is a discrete convolution of the image with itself (N voxels)

C (r) = (I(x)− f2)(I(x + r)− f2)

≈ 1

V

∫
dx (I(x)− f2)(I(x + r)− f2)

≈ 1

N
(I(x)− f2) ∗ (I(x + r)− f2)

≈ 1

N
F−1 ‖ F [I(x)− f2] ‖2

Fitting C (r) to an ACF model:

I Yields parameters to initialize SMRT microstructure (=Parametric ACF model)

I Parametric ACF models required for the numerics
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ACF models available in SMRT

(smrt.microstructure)

Model Origin # Param’s Defined by

Exponential MEMLS 1 Aex(r) = exp(−r/lex)

Teubner–Strey Microemulsions 2 ATS(r) = exp(−r/ξTS) sin(2πr/dTS)
(2πr/dTS)

,

Independent sphere Sparse media 1 a spherical ACF

Sticky hard spheres QCA/DMRT 2 (later)

Gaussian random field 3D reconstruction 2 an auxiliary ACF

Unified models [Picard et al 2022] 2 (later)

where C (r) = C (0)A(r).



Comparison of different ACF models

Fitting the same image to different ACF models:

I Clear difference in performance

I EXP less flexible than TS (evident)

I Profound impact on MW modeling (cf. right)

I More on this → practical
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Sticky hard spheres: The basis of QCA and DMRT

I Determined by volume fraction f2, diameter d , and stickiness τ [Baxter, 1967]

I Example realizations (identical f2, d , i.e. same SSA):

τ = 10.0 τ = 0.11

Main effect of stickiness τ :
I Clustering → new structural length scales → impact on scattering



How can sphere models be related to C (r)?

Commonly formulated in different types of correlation functions:

DMRT is based on:

r

Pair correlation function: g(r)
(→ Prob. that r connects the centers of

two spheres)

IBA requires:

r

Two-point correlation function: C (r)
( → Prob. that r connects the interior of

two spheres



Relating two-point correlations and pair correlations:

Exact result for arbitrary (hard) sphere packings:

C (r) = nvint(r) + n2 (vint ∗ g) (r)

I vint(r): Intersection volume of two spheres, n: number density of spheres

Equivalent in Fourier space:

C̃ (k) = nP(k)S(k)

I P(k): form factor, S(k): structure factor [Stell & Torquato 1982]

This link allows to:
I implement DMRT’s sticky hard spheres in IBA

I compare QCA scattering formulations with IBA

I fit µCT images to sticky hard spheres (not worth it)
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Comparison of IBA and QCA-CP

Scattering coefficient κs (low freq):

κIBA
s =

2

9
k40a

3φ2f
IBA(ε1, ε2, φ2) C̃ (0)

κQCA−CP
s =

2

9
k40a

3φ2f
QCA−CP(ε1, ε2, φ2) C̃ (0)

I Same microstructure term C̃ (0)

Main message:

I IBA ≈ QCA-CP (shortrange) for low frequency

I IBA ≈ QCA (longrange) for higher frequency
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What if we dont’t have ACF measurements?

Snow field measurements:
I Often no µCT ⇒ no ACF

I Always SSA estimates
(DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)

Procedure in the past:
I Go from SSA (or `p) to ACF parameters via:

ξ = some factor · `p
For the exponential ACF [Mätzler 2002]

dSHS = another factor · `p
For the Sticky Hard Spheres ACF [Brucker 2011, Royer 2017,...]

I Empirical. ACF-model specific. [K
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What we could do instead

Scattering coefficient in IBA

κs ∼ k4Ã(k)

k : wavenumber

Ã(k) : Fourier Transform of the ACF

Dimension of Ã(k): m3

Suggests definition of microwave grain size:

`MW := Ã(0)1/3 =

(
4π

∫ ∞
0

drr2A(r)

)1/3

[Picard et al, 2022]

I Definition independent of any model!
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Ã(k) : Fourier Transform of the ACF

Dimension of Ã(k): m3

Suggests definition of microwave grain size:

`MW := Ã(0)1/3 =
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Ã(k) : Fourier Transform of the ACF

Dimension of Ã(k): m3
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Geometrical interpretation of the microwave grain size

A little algebra reveals:

`MW := Ã(0)1/3 zero frequency Fourier transform of the ACF

= ... rewritten as the Laplace transform of the ACF

= ... related to the Chord length distribution (CLD)

= K`p admits a geometrical interpretation

Polydispersity:

K =

(
µ4

24µ41
− µ2µ3

6µ51
φ+

µ32
8µ61

φ2
)1/3

(1− φ)−2/3

(φ: relative density, µi : moments of the CLD, approximation based on [Roberts 1999])
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What we gained:

Geometrical link: Low frequency microwave scattering ←→ Optical measurements
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Exploiting the microwave grain size with SMRT

(cf. smrt.microstructure.unified*)

From SSA to microwave predictions:

I Inverse: Retrieval of polydispersity

I Forward: Use an educated guess for K

Polydispersity distribution
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Emission: SMRT vs Measurements
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Summary

The two-point (or autocorrelation) function of snow:

I Dictates microwave scattering

I Defines microwave grain size and reveals difference to optical grain size

Microstructure in SMRT:
I Represented by parametric ACF forms

I An SMRT snowpack can comprise layers with different ACFs

I New ACF models can be easily added by implementing C (r)/C̃ (k)

I Not explored yet: Using measured ACF data directly (need for regularization)

Thank you for your attention.
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