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Microstructure in SMRT

Snow microstructure as seen by X-ray tomography:

> A key driver for developing SMRT: Faithful representation of microstructure



Recap from EM lecture: Where microstructure matters

IBA phase function: (cf. yesterday)

P (9, 9)1.2 frame = M(|kq|) kg sin® x(e2 — €1)? Y?(e1, €2)

» Angular distribution of scattered intensity
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Recap from EM lecture: Where microstructure matters

IBA phase function: (cf. yesterday)
P (9,9)1-2 frame = M(|ka|) kg sin® x(e2 — €1)? Y?(e1, €2) (1)
» Angular distribution of scattered intensity

Microstructure term

M(lky) = SUel) @)

> defined by the Fourier transform C(|kq|) of the auto-correlation function (ACF).

Goal of the lecture
» Understand the ACF and its implications for scattering



Outline

Motivation

ACF: Definition and properties

ACF for spheres: Linking IBA and QCA

ACF reinterpreted: The microwave grain size



Definition of the ACF for random media

Indicator function of the ice phase:
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Definition of the ACF for random media

Indicator function of the ice phase:

I(x):{]" if xisinice m;:_

0, if xisin air \

» A uCT image is a discrete version of it

Auto-correlation function (ACF) and Fourier transform (3D):

Cr) = (Z(x) = R)(Z(x+r)—f)
C(k) = /dr exp(—ir - k)C(r)

» Spectrum of (micro-scale) density fluctuations
> SMRT involves only C(|k|) (isotropy)



Basic geometrical properties of the ACF:

Special values and geometrical meaning:
» Link to density:

(schematic)

C(0) = h(1-1h)

> Link to specific surface area (SSA):

co) = 1/¢,
SSApicef2
4

Lp: Porod length, f>: ice volume fraction



Basic geometrical properties of the ACF:

Special values and geometrical meaning:
» Link to density:

(schematic)

C(0) = h(1-1h)

> Link to specific surface area (SSA):

co) = 1/¢,
SSApicef2
4

Lp: Porod length, f>: ice volume fraction

Implication:

» Density and SSA characterize only the behavior of C(r & 0)
» Density and SSA not sufficient to characterize MW scattering



From pCT images to SMRT simulations

Computing the ACF for a 3d image:

» C(r) is a discrete convolution of the image with itself (N voxels)

C(r) = (Z(x) = R)Z(x +r) — f)
~ /dx X) = B)Z(x + 1) — 5)
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From pCT images to SMRT simulations

Computing the ACF for a 3d image:

» C(r) is a discrete convolution of the image with itself (N voxels)
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Fitting C(r) to an ACF model:

» Yields parameters to initialize SMRT microstructure (=Parametric ACF model)

» Parametric ACF models required for the numerics



ACF models available in SMRT

(smrt.microstructure)

Model Origin # Param’s Defined by

Exponential MEMLS 1 Aex(r) = exp(—r/lx)
Teubner-Strey Microemulsions 2 Ars(r) = exp(—r/&xrs) %
Independent sphere Sparse media 1 a spherical ACF

Sticky hard spheres QCA/DMRT 2 (later)

Gaussian random field 3D reconstruction 2 an auxiliary ACF

Unified models [PicarD BT AL 2022] 2 (later)

where C(r) = C(0)A(r).



Comparison of different ACF models

Fitting the same image to different ACF models:

» Clear difference in performance

» EXP less flexible than TS (evident)

» Profound impact on MW modeling (cf. right)
> More on this — practical
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ACF for spheres: Linking IBA and QCA



Sticky hard spheres: The basis of QCA and DMRT

» Determined by volume fraction f,, diameter d, and stickiness 7 [BAXTER, 1967]

» Example realizations (identical £, d, i.e. same SSA):

7 =10.0 7 =0.11

Main effect of stickiness 7:

» Clustering — new structural length scales — impact on scattering



How can sphere models be related to C(r)?

Commonly formulated in different types of correlation functions:

DMRT is based on: IBA requires:
r
r
Pair correlation function: g(r) Two-point correlation function: C(r)

(— Prob. that r connects the centers of ( — Prob. that r connects the interior of
two spheres) two spheres



Relating two-point correlations and pair correlations:

Exact result for arbitrary (hard) sphere packings:
C(r) = nvins(r) + n? (ving * g) (r)

» vint(r): Intersection volume of two spheres, n: number density of spheres
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Relating two-point correlations and pair correlations:

Exact result for arbitrary (hard) sphere packings:
C(r) = nvins(r) + n? (ving * g) (r)
» vint(r): Intersection volume of two spheres, n: number density of spheres
Equivalent in Fourier space:
C(k) = nP(k)S(k)

» P(k): form factor, S(k): structure factor [STELL & TORQUATO 1982]

This link allows to:
» implement DMRT's sticky hard spheres in IBA

» compare QCA scattering formulations with IBA

» fit uCT images to sticky hard spheres (not worth it)

[LOowE & Picarp, TC, 2015]



Comparison of IBA and QCA-CP

Scattering coefficient s (low freq):

QcA-cP

) _ .
RIBA = §k6‘a3¢2fIBA(E1,€2,¢2)C(O) )
2 y ~
RECATT = §kga3¢2fQCA_CP(51752’¢2)C(O)
» Same microstructure term E(O) .

S
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Main message:

» IBA ~ QCA-CP (shortrange) for low frequency
» IBA =~ QCA (longrange) for higher frequency
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[LOWE & Picarp, TC, 2015]

[P1cARD ET AL, TC, 2018]
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ACF reinterpreted: The microwave grain size



What if we dont't have ACF measurements?

Snow field measurements:
» Often no uCT = no ACF

> Always SSA estimates
(DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)
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What if we dont't have ACF measurements?

Snow field measurements:
» Often no uCT = no ACF

> Always SSA estimates
(DUFISS, IRIS, IceCube, SMP, InfraSnow, ...)

Procedure in the past:
» Go from SSA (or £,) to ACF parameters via:
§ = some factor - £/,
For the exponential ACF [MATZLER 2002]
dsHs = another factor - /,,
For the Sticky Hard Spheres ACF [BRUCKER 2011, ROYER 2017,...]

» Empirical. ACF-model specific.
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What we could do instead

Scattering coefficient in IBA
ks ~ K A(k)

A(k) : Fourier Transform of the ACF

Dimension of A(k): m3



What we could do instead

Scattering coefficient in IBA

ks ~ K'A(K)
k : wavenumber

A(k) : Fourier Transform of the ACF

7 (mm)

Dimension of A(k): m3

Suggests definition of microwave grain size:

B - 1/3
Oaw = A(0)Y/3 = (47r/ drr2A(r))
0

[PICARD ET AL, 2022]




What we could do instead

Scattering coefficient in IBA

ks ~ K'A(K)
k : wavenumber

A(k) : Fourier Transform of the ACF
Dimension of A(k): m3
Suggests definition of microwave grain size:

B - 1/3
Oaw = A(0)Y/3 = (4#/ drr2A(r)>
0

[PICARD ET AL, 2022]

» Definition independent of any model!
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Geometrical interpretation of the microwave grain size

A little algebra reveals:

aw = /5(0)1/3 zero frequency Fourier transform of the ACF
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= .. related to the Chord length distribution (CLD)
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Geometrical interpretation of the microwave grain size

2D slice at z=4 mm

A little algebra reveals:

aw = /5(0)1/3 zero frequency Fourier transform of the ACF
rewritten as the Laplace transform of the ACF
related to the Chord length distribution (CLD)

= K/, admits a geometrical interpretation

Polydispersity:
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(¢: relative density, p;: moments of the CLD, approximation based on [ROBERTS 1999])




Geometrical interpretation of the microwave grain size

2D slice at z=4 mm

A little algebra reveals:

aw = /5(0)1/3 zero frequency Fourier transform of the ACF
rewritten as the Laplace transform of the ACF
related to the Chord length distribution (CLD)

= K/, admits a geometrical interpretation

Polydispersity:

3 1/3

_ [ M4 K213 Hy 2 -2/3

K= — 2 1—
(24u‘1‘ 6ut ” " 8ug” ) (1=9)

(¢: relative density, p;: moments of the CLD, approximation based on [ROBERTS 1999])

What we gained:
Geometrical link: Low frequency microwave scattering «— Optical measurements



Exploiting the microwave grain size with SMRT

(cf. smrt.microstructure.unifiedx)
Emission: SMRT vs Measurements
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[P1CARD ET AL, 2022]




Exploiting the microwave grain size with SMRT

(cf. smrt.microstructure.unifiedx)
Emission: SMRT vs Measurements
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Summary

The two-point (or autocorrelation) function of snow:

P Dictates microwave scattering

» Defines microwave grain size and reveals difference to optical grain size



Summary

The two-point (or autocorrelation) function of snow:

P Dictates microwave scattering

» Defines microwave grain size and reveals difference to optical grain size

Microstructure in SMRT:
» Represented by parametric ACF forms
» An SMRT snowpack can comprise layers with different ACFs
> New ACF models can be easily added by implementing C(r)/C(k)
» Not explored yet: Using measured ACF data directly (need for regularization)

Thank you for your attention.
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