Sea-ice in the snow microwave radiative transfer model

Slides (mostly) courtesy Ghislain Picard

Goal:

Before After Snow Saline snow 1 Ice, brine, bubbles, ... Picard et al., 2018 Saline water

> Lake Ice: Murfitt et al., 2022 Sea Ice: Soriot et al., 2022

A note on snow salinity:

Brine inclusions within snow matrix as viewed by x-ray tomography:

In SMRT => change permittivity (see practical)

Sea water:

It is a homogeneous medium

 \rightarrow implement saline water permittivity formulation proposed in the literature

Sea-ice:

It is a multi-phase random medium

 \rightarrow implement effective permittivity + random scatterers

Electromagnetic theories in SMRT are versatile, but are limited to <u>bi-phase media</u>.

Our approach:

- three-phase random media have not been considered
- neglect one phase when possible (e.g. first year sea-ice)
- merge phases intelligently (e.g. multi-year sea ice)

First year sea-ice

Modeling sea-ice

Multi year sea-ice

- no scattering by brine pockets, but their effect on the absorption is taken into account

- no 'continuity' between first year and multi year sea-ice, **except for low frequencies?** (if Eff permittivity uses the same formula at both levels)

- but no better solution has been proposed in the past (to our knowledge)

Modeling sea-ice

3 phase?

polder_van_santen_three_spherical_components(f1, f2, eps0, eps1, eps2)

Calculates effective permittivity using Polder and van Santen with three components assuming spherical inclusions

Parameters:	 f1 – fractional volume of component 1 f2 – fractional volume of component 2
	• eps0 – permittivity of material 0
	 eps1 - permittivity of material 1 eps2 - permittivity of material 2

Implementation

Structure of SMRT before sea-ice:

Implementation

Structure of SMRT after sea-ice:

Implementation

1st **step:** Many new permittivity formulation in SMRT contributed by: Ludovic Brucker, Nina Maass, Mai Winstrup

- saline snow, saline ice and sea-water with documentation, references, etc...

2nd step: make_ice_column function, contributed by: Nina Maass, Mai Winstrup

make_ice_column(ice_type, thickness, temperature, microstructure_model, brine_inclusion_shape='spheres', salinity=0.0, brine_volume_fraction=None, brine_permittivity_model=None, ice_permittivity_model=None, saline_ice_permittivity_model=None, porosity=0, density=None, add_water_substrate=True, surface=None, interface=None, substrate=None, atmosphere=None, **kwargs)

Build a multi-layered ice column. Each parameter can be an array, list or a constant value.

ice_type variable determines the type of ice, which has a big impact on how the medium is modelled and the parameters: - First year ice is modelled as scattering brines embedded in a pure ice background - Multi year ice is modelled as scattering air bubbles in a saline ice background (but brines are non-scattering in this case). - Fresh ice is modelled as scattering air bubbles in a pure ice background (but brines are non-scattering in this case).

First-year and multi-year ice is equivalent only if scattering and porosity are nulls. It is important to understand that in multi-year ice scattering by brine pockets is neglected because scattering is due to air bubbles and the emmodel implemented up to now are not able to deal with three-phase media.

Parameters: o ice

- **ice_type** Ice type. Options are "firstyear", "multiyear", "fresh"
 - **thickness** thicknesses of the layers in meter (from top to bottom). The last layer thickness can be "numpy.inf" for a semi-infinite layer.

• temperature - temperature of ice/water in K

A lot of effort and common discussion to :

- make the names of the function and arguments as clear and unambiguous as possible
- choose the most adequate default for beginners
- allow fine tuning of many aspects for experts

3rd step: The « plus » operator

= sea-ice

Summary

First year sea ice: brine scatterers in pure ice background **Multi year sea ice:** air bubble scatterers in slightly saline background

Additive layers. If you want:

medium = atmosphere + make_snowpack + make_ice_column + make_water_body

Many permittivity formulations: choice may matter!

Read the documentation: smrt.readthedocs.io

In tutorials:

- Make and compare FYI / MYI sea ice layers
- Change sea ice permittivity
- Add snow salinity

