Electromagnetic theory

Henning Löwe

WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

$3^{\rm rd}$ SMRT Training School, AWI, 06-08 July 2023

Introduction

Wave propagation, effective permittivity

Volume scattering, phase function, absorption

Interfaces, surface scattering

The problem at a glance: RS of snow and ice

SMRT's task:

Solving the radiative transfer equation (RTE):

 $\mu \frac{\partial \mathbf{I}(\boldsymbol{\mu}, \boldsymbol{\phi}, \boldsymbol{z})}{\partial \boldsymbol{z}} = -\boldsymbol{\kappa}_{\mathrm{e}}\left(\boldsymbol{\mu}, \boldsymbol{\phi}, \boldsymbol{z}\right) \mathbf{I}\left(\boldsymbol{\mu}, \boldsymbol{\phi}, \boldsymbol{z}\right) + \frac{1}{4\pi} \int \!\!\!\int_{4\pi} \mathsf{P}(\boldsymbol{\mu}, \boldsymbol{\phi}; \boldsymbol{\mu}', \boldsymbol{\phi}', \boldsymbol{z}) \mathbf{I}\left(\boldsymbol{\mu}', \boldsymbol{\phi}', \boldsymbol{z}\right) d\boldsymbol{\Omega}' + \boldsymbol{\kappa}_{\mathrm{a}}\left(\boldsymbol{\mu}, \boldsymbol{\phi}, \boldsymbol{z}\right) \boldsymbol{\alpha} \boldsymbol{T}(\boldsymbol{z}) \mathbf{I}$

for the Stokes vector \mathbf{I} .

Our task:

Providing electromagnetic material properties for snow, ice in the RTE above (P, κ_e,κ_a) and making optimal choices in view of the picture on the right.

The systematic way of doing this

Take a random dielectric material:

$$\varepsilon(\mathbf{r}) = \begin{cases} \varepsilon_1 \text{ if } \mathbf{r} \text{ is in air} \\ \varepsilon_2 \text{ if } \mathbf{r} \text{ is in ice} \\ \varepsilon_3 \text{ if } \mathbf{r} \text{ is in brine} \end{cases}$$

•

The systematic way of doing this

Take a random dielectric material:

$$\varepsilon(\mathbf{r}) = \begin{cases} \varepsilon_1 \text{ if } \mathbf{r} \text{ is in air} \\ \varepsilon_2 \text{ if } \mathbf{r} \text{ is in ice} \\ \varepsilon_3 \text{ if } \mathbf{r} \text{ is in brine} \end{cases}$$

Solve Maxwell's equation

for the micro-scale electric field $\boldsymbol{\textit{E}}$

(1)
$$\nabla \times \nabla \boldsymbol{E}(\boldsymbol{r}) - \frac{k_0^2}{\varepsilon_0} \varepsilon(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r}) = 0$$

(vacuum wave number $k_0 = 2\pi\nu/c_0$, frequency ν , speed of light c_0)

•

The systematic way of doing this

Take a random dielectric material:

$$\varepsilon(\mathbf{r}) = \begin{cases} \varepsilon_1 \text{ if } \mathbf{r} \text{ is in air} \\ \varepsilon_2 \text{ if } \mathbf{r} \text{ is in ice} \\ \varepsilon_3 \text{ if } \mathbf{r} \text{ is in brine} \end{cases}$$

Solve Maxwell's equation

for the micro-scale electric field ${m E}$

(1)
$$\nabla \times \nabla \boldsymbol{E}(\boldsymbol{r}) - \frac{k_0^2}{\varepsilon_0} \varepsilon(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r}) = 0$$

(vacuum wave number $k_0 = 2\pi \nu/c_0$, frequency ν , speed of light c_0)

Derive effective EM properties

from the solution by volume averaging ightarrow ALL properties inherit from microstructure

•

The practical way of doing this

The common way of building/using models:

- Collecting available formulations for EM properties
- Mixing approximations that involve different assumptions
- Hoping for the best

The practical way of doing this

The common way of building/using models:

- Collecting available formulations for EM properties
- Mixing approximations that involve different assumptions
- Hoping for the best

Goal of the lecture:

- Understanding involved EM processes and properties
- Understanding involved assumptions

Outline

Introduction

Wave propagation, effective permittivity

Volume scattering, phase function, absorption

Interfaces, surface scattering

Propagation of plane waves in a homogeneous material

Plane waves:

If the permittivity ε does not depend on position (homogeneus), Eq. (1) admits plane wave solution:

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \exp(ik\hat{\boldsymbol{k}}\cdot\boldsymbol{r}-i\omega t)$$

with a complex **propagation constant** k

$$k = k' + ik''$$

Propagation of plane waves in a homogeneous material

Plane waves:

If the permittivity ε does not depend on position (homogeneus), (Eq. (1) admits plane wave solution:

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \exp(ik\hat{\boldsymbol{k}}\cdot\boldsymbol{r}-i\omega t)$$

with a complex **propagation constant** k

$$k = k' + ik''$$

which is related to the complex index of refraction n

$$k = nk_0$$

Propagation of plane waves in a homogeneous material

Plane waves:

Plane waves: If the permittivity ε does not depend on position (homogeneus), Eq. (1) admits plane wave solution:

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \exp(ik \hat{\boldsymbol{k}} \cdot \boldsymbol{r} - i\omega t)$$

with a complex **propagation constant** k

$$k = k' + ik''$$

which is related to the complex **index of refraction** *n*

$$k = nk_0$$

which is in turn related to the complex **dielectric constant** ε (or **permittivity**)

$$\varepsilon = n^2$$

All guantities k, n, ε are equivalent, complex-valued, EM material properties.

Propagation of plane waves in homogeneous snow or ice

When is snow or ice a homogeneous medium?

Frequency

Propagation of plane waves in homogeneous snow or ice

When is snow or ice a homogeneous medium?

For "very low" frequency:

Snow or saline ice can be regarded as a homogeneous medium described by an effective permittivity (rigorous concept)

 Effective permittivity contains microstructure only via volume fractions ("grain size" does not enter).

Effective permittivity of mixtures (air, ice, water, brine)

How effective permittivities are mostly derived:

Place randomly oriented spheroids with permittivity
 ε₂, ε₃ in a background medium ε₁.

Effective permittivity of mixtures (air, ice, water, brine)

How effective permittivities are mostly derived:

Place randomly oriented spheroids with permittivity
 ε₂, ε₃ in a background medium ε₁.

Frequency or temperature dependence:

▶ inherited from phase permittivities $\varepsilon_1, \varepsilon_2, \varepsilon_3$

Effective permittivity of mixtures (air, ice, water, brine)

How effective permittivities are mostly derived:

Place randomly oriented spheroids with permittivity
 ε₂, ε₃ in a background medium ε₁.

Frequency or temperature dependence:

▶ inherited from phase permittivities $\varepsilon_1, \varepsilon_2, \varepsilon_3$

Permittivity formulations in SMRT:

(cf. smrt.permittivity)

- Polder-van Santen (default)
- Bruggemann
- Maxwell–Garnett

Outline

Introduction

Wave propagation, effective permittivity

Volume scattering, phase function, absorption

Interfaces, surface scattering

Recap: Single sphere scattering

Heterogeneities:

Perfect homogeneity is an idealization valid only for $k \rightarrow 0$. By increasing the frequency, the plane wave will start to "see" heterogeneities

When a plane wave hits a sphere, the solution of Eq. (1)

(2)
$$\boldsymbol{E} = \boldsymbol{E}_{hom} + \boldsymbol{E}_0 f(\boldsymbol{k}_s, \boldsymbol{k}_i) \frac{\exp ikr}{r}$$

superposes background field (hom) and scattered field (scat)

Recap: Single sphere scattering

Heterogeneities:

Perfect homogeneity is an idealization valid only for $k \rightarrow 0$. By increasing the frequency, the plane wave will start to "see" heterogeneities

When a plane wave hits a sphere, the solution of Eq. (1)

(2)
$$\boldsymbol{E} = \boldsymbol{E}_{hom} + \boldsymbol{E}_0 f(\boldsymbol{k}_s, \boldsymbol{k}_i) \frac{\exp ikr}{r}$$

superposes background field (hom) and scattered field (scat)

Size-frequency scaling:

▶ $ka \ll 1$: Rayleigh, $ka \approx 1$: Mie, $ka \gg 1$: Geometrical optics

Recap: Single sphere scattering

Heterogeneities:

Perfect homogeneity is an idealization valid only for $k \rightarrow 0$. By increasing the frequency, the plane wave will start to "see" heterogeneities

When a plane wave hits a sphere, the solution of Eq. (1)

(2)
$$\boldsymbol{E} = \boldsymbol{E}_{hom} + \boldsymbol{E}_0 f(\boldsymbol{k}_s, \boldsymbol{k}_i) \frac{\exp ikr}{r}$$

superposes background field (hom) and scattered field (scat)

Size-frequency scaling:

▶ $ka \ll 1$: Rayleigh, $ka \approx 1$: Mie, $ka \gg 1$: Geometrical optics

Energy conservation during scattering:

Scattering coefficient, absorption coefficient, phase function and dielectric constant are all linked

Relation between scattering quantities

 $\begin{array}{ll} \mbox{Phase function} & p = \frac{4\pi}{\kappa_s} |f({\bm k}_s, {\bm k}_i)|^2 \\ & \mbox{Angular distribution of scattered intensity} \\ \mbox{Scattering coefficient:} & \kappa_s = \frac{1}{4\pi} \int_{4\pi} d\Omega |f({\bm k}_s, {\bm k}_i)|^2 \\ & \mbox{Total scattered intensity} \\ \mbox{Extinction coefficient:} & \kappa_e = 2 \mathcal{I} m(\sqrt{\varepsilon_{eff}}) \\ \mbox{Intensity attenuation (including scattering and absorption)} \\ \mbox{Absorption coefficient:} & \kappa_a = \kappa_e - \kappa_s, \\ & \mbox{Intensity attenuation due to Ohmic currents} \end{array}$

E hom E scat

Table 1: Interrelation of scattering quantities

Scattering approximations for random two-phase media:

The Maxwell Eq (1) can be written as a perturbation scheme

(3)
$$\nabla \times \nabla \boldsymbol{E}(\boldsymbol{r}) - \frac{k_0}{\varepsilon_0} \varepsilon_{hom} \boldsymbol{E}(\boldsymbol{r}) = \frac{k_0}{\varepsilon_0} [\varepsilon(\boldsymbol{r}) - \varepsilon_{hom}] \boldsymbol{E}(\boldsymbol{r})$$

of a homogeneous background ε_{hom} with scatterers $[\varepsilon(\mathbf{r}) - \varepsilon_{hom}]$

Scattering approximations for random two-phase media:

The Maxwell Eq (1) can be written as a perturbation scheme

(3)
$$\nabla \times \nabla \boldsymbol{E}(\boldsymbol{r}) - \frac{k_0}{\varepsilon_0} \varepsilon_{hom} \boldsymbol{E}(\boldsymbol{r}) = \frac{k_0}{\varepsilon_0} [\varepsilon(\boldsymbol{r}) - \varepsilon_{hom}] \boldsymbol{E}(\boldsymbol{r})$$

of a homogeneous background ε_{hom} with scatterers $[\varepsilon(\mathbf{r}) - \varepsilon_{hom}]$ The relevance of ε_{hom}

Choice arbitrary but impacts the approximation

Scattering approximations for random two-phase media:

The Maxwell Eq (1) can be written as a perturbation scheme

(3)
$$\nabla \times \nabla \boldsymbol{E}(\boldsymbol{r}) - \frac{k_0}{\varepsilon_0} \varepsilon_{hom} \boldsymbol{E}(\boldsymbol{r}) = \frac{k_0}{\varepsilon_0} [\varepsilon(\boldsymbol{r}) - \varepsilon_{hom}] \boldsymbol{E}(\boldsymbol{r})$$

of a homogeneous background ε_{hom} with scatterers $[\varepsilon(\mathbf{r}) - \varepsilon_{hom}]$ The relevance of ε_{hom}

Choice arbitrary but impacts the approximation

Scattering approximations in SMRT:

(cf. smrt.emmodel)

- QCA: Quasicrystalline approximation
- QCA-CP: Quasicrystalline approximation (coherent potential)
- SFT: Strong fluctuation theory
- IBA: Improved Born approximation
- SCE: Strong contrast expansion

The improved Born approximation (IBA): Believing by analogy

Rayleigh phase function in the IBA:

 $f_{scat}(\chi) \sim M(|\mathbf{k}_d|) k^4 \sin^2 \chi F_{\text{IBA}}(\varepsilon_1, \varepsilon_2)$

Rayleigh phase function of a sphere:

 $f_{scat}(\chi) \sim a^6 k^4 \sin^2 \chi F_{\rm sph}(\varepsilon_1, \varepsilon_2)$

- Size term
- Angle term
- Dielectric term

• We just need a generalized understanding of size (\rightarrow tomorrow)

Comparison of scattering formulations for two-phase media (snow)

For a sticky hard sphere microstructure (varying density, varying radius *a*)

Scattering formulations:

- Differences grow as a function of $k_0 a$
- Continuity as a function of density requires "symmetrization"

Scattering in three-phase media (sea ice)

Scattering formulations for three phase media

- ▶ In principle: Restart from Eq. (3) and redo Tab. 1
- Such a consistent approach is presently lacking
- SMRT: Pragmatic combination of effective permittivity, inclusions shape and IBA two-phase scattering, discontinuous!

(Maus et al, TC, 2021)

Scattering in three-phase media (sea ice)

Scattering formulations for three phase media

- ▶ In principle: Restart from Eq. (3) and redo Tab. 1
- Such a consistent approach is presently lacking
- SMRT: Pragmatic combination of effective permittivity, inclusions shape and IBA two-phase scattering, discontinuous!

First year ice:

Spheroidal brine inclusions in a pure ice background

Multi year ice:

Spheroidal air inclusions in a saline ice background

(Maus et al, TC, 2021)

Getting back from scattering to the RTE

The RTE in SMRT considers all Stokes components

$$\mathbf{I} = \begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix} = \begin{bmatrix} |\mathbf{E}_{\mathrm{H}}|^2 + |\mathbf{E}_{\mathrm{V}}|^2 \\ |\mathbf{E}_{\mathrm{H}}|^2 - |\mathbf{E}_{\mathrm{V}}|^2 \\ 2\mathcal{R}e(\mathbf{E}_{\mathrm{H}}\mathbf{E}_{\mathrm{V}}*) \\ 2\mathcal{R}e(\mathbf{E}_{\mathrm{V}}\mathbf{E}_{\mathrm{H}}*) \end{bmatrix}$$

The 4×4 phase matrix:

$$\mathsf{P}(\mu,\phi,\mu',\phi') = \begin{bmatrix} P_{11} & P_{12} & P_{13} & 0\\ P_{21} & P_{22} & P_{23} & 0\\ P_{31} & P_{32} & P_{33} & 0\\ 0 & 0 & 0 & P_{44} \end{bmatrix}$$

• can be computed from $f_{scat}(\chi)$ (details in Picard et al 2018)

Outline

Introduction

- Wave propagation, effective permittivity
- Volume scattering, phase function, absorption
- Interfaces, surface scattering

Plane waves at smooth interfaces

 $n_1\sin(\theta_1)=n_2\sin(\theta_2)$

Plane waves at smooth interfaces

Refraction:

Snells law:

 $n_1\sin(\theta_1)=n_2\sin(\theta_2)$

Transmission and reflection:

- Fresnel formulas
- Angles, intensities determined by the effective permittivities ε₁ ε₂ and polarization
- Whether a surface is smooth depends on k

Geometrical characterization:

- Involves at least two length scales
- \blacktriangleright Vertical height standard deviation σ
- Horizontal correlation lenght ξ

Geometrical characterization:

- Involves at least two length scales
- \blacktriangleright Vertical height standard deviation σ
- Horizontal correlation lenght ξ

EM surface scattering theory:

- Involves at least two lenght scale ratios, either (kσ, kξ) or (kσ, σ/ξ)
- Approximations depend on their magnitude

Geometrical characterization:

- Involves at least two length scales
- \blacktriangleright Vertical height standard deviation σ
- Horizontal correlation lenght ξ

EM surface scattering theory:

- lnvolves at least **two lenght scale ratios**, either $(k\sigma, k\xi)$ or $(k\sigma, \sigma/\xi)$
- Approximations depend on their magnitude

Geometrical characterization:

- Involves at least two length scales
- \blacktriangleright Vertical height standard deviation σ
- Horizontal correlation lenght ξ

EM surface scattering theory:

- Involves at least two lenght scale ratios, either (kσ, kξ) or (kσ, σ/ξ)
- Approximations depend on their magnitude

Surface scattering models in SMRT

(smrt.interface)

- Geometrical optics $k\sigma \gg 1$, $k\xi \gg 1$, σ/ξ fixed
- Integral equation method (IEM)

Summary: Electromagnetic theory

EM ingredients in SMRT

- \blacktriangleright RTE needs P, $\kappa_{
 m s}$, $\kappa_{
 m a}$, $arepsilon_{
 m eff}$
- Many available formulations implemented
- Many carefully chosen default options

Thank you for your attention.