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WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

2nd SMRT Training School, University Waterloo, 04-06 July 2019



Outline

Motivation

Background on correlation functions

Microstructure implementation in SMRT



Microstructure in SMRT

Snow microstructure as nowadays seen by X-ray tomography:

I A primary goal of SMRT: Faithful representation of microstructure



Recap from EM lecture: Where microstructure matters

IBA phase function:

p (ϑ, ϕ)1-2 frame = f2(1− f2)(ε2 − ε1)2 Y 2(ε1, ε2) k40 M(|kd |) sin2 χ (1)

Microstructure term:

M(|kd|) =
1

4π

C̃ (|kd |)
f2(1− f2)

. (2)

is related to the Fourier transform C̃ (|kd |) of the two-point correlation function or
auto-correlation function (ACF).

→ Need to understand this term.
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Definition and properties of the ACF

Indicator function of the ice phase:

I(x) =

{
1, if x is in ice matrix

0, if x is in pore space

I A binary image (µCT, thin section) is a discrete version of it

Auto-correlation function (ACF):

C (r) =
(
I(x)− f2

)(
I(x + r)− f2

)
=

(
I(x)I(x + r)− f 22

)
I Fluctuations around the mean (volume fraction f2)

I Spatial (two-point) statistics of the ice-air assembly
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Why is an ACF more than SSA and density?

Can be seen from special ACF values:

C (0) = f2(1− f2)

C ′(0) =
SSAρicef2

4

(schematic)

I SSA and density characterize only the behavior of C (r ≈ 0): small scale
correlations

I Microstructures with the same density and the same SSA can have completely
different “correlation tails”

I Single length scale models (like exponential) seem to be insufficient



A real example to demonstrate this

I Apparently “simple snow” does not have “simple correlations”:
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I We don’t understand yet why, but SMRT shouldn’t suffer from that

I More on that → practical



How can sphere models be related to C (r)?

Commonly formulated in different types of correlation functions:

DMRT is based on:

r

Pair correlation function: g(r)
(→ Prob. that r connects the centers of

two spheres)

IBA requires:

r

Two-point correlation function: C (r)
( → Prob. that r connects the interior of

two spheres



Computing the ACF from pair correlations:

Exact result for arbitrary (hard) sphere packings: (Stell & Torquato, 1982)

C (r) = nvint(r) + n2 (vint ∗ g) (r)

I vint(r): Intersection volume of two spheres, n: number density of spheres

Or in Fourier space
C̃ (k) = nP(k)S(k)

I P(k): form factor, S(k): structure factor (small angle scattering lingo)

This link allows to...

I map µCT images onto arbitrary hard-sphere packings

I implement DMRT’s sticky hard spheres in IBA

I compare EM formulations from DMRT and IBA

(Löwe & Picard, 2015)



A good point to demystify “sticky hard spheres”

Model for a molecular fluid (Baxter, 1967)

I Determined by volume fraction f2, diameter d , and stickiness τ

Example realizations: (identical f2, d → same SSA!!)

τ = 10.0 τ = 0.11

(Code acknowledgements: L. Tsang)

Main effect of stickiness τ :
I Clustering → new structural length scales → impact on scattering
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Considered models in SMRT and reasons for them (C (r) = C (0)A(r))

Exponential: Used by MEMLS

Aex(r) = exp(−r/lex) (3)

Sticky hard spheres: Used by DMRT-ML, DMRT-QMS

(defined in Fourier space) (4)

Independent sphere: A classic (“spherical acf model”), sparse medium model

Asph(r) =
[
1− 3 (r/dsph)/2) + (r/dsph)3 /2

]
H(dsph − r) , (5)

Teubner–Strey: Google “scattering peak” and “bicontinuous”...

ATS(r) = exp(−r/ξTS)
sin(2πr/dTS)

(2πr/dTS)
, (6)

(Level cut) Gaussian random fields: Most powerful in the long term

Agrf(r) =
1

2π

∫ Cψ(r)

0
dt

1√
1− t2

exp

[
− β2

1 + t

]
(7)



Microstructure implementation in SMRT

Abstract base class:

class Autocorrelation (autocorrelation.py)

I Handles common functionality: Numerical Fourier transforms

Derived microstructure classes:

class Exponential (exponential.py)

class StickyHardSpheres (sticky_hard_spheres.py)

class IndependentSphere (independent_sphere.py)

class GaussianRandomField (gaussian_random_field.py)

class TeubnerStrey (teubner_strey.py)

class MeasuredAutocorrelation (measured_autocorrelation.py)

I Hold microstructure parameters
I Compute analytical autocorrelation functions (if available)
I Must implement either C (r) or C̃ (k).
I Here you can easily add your ultimate ACF model



Practically: How is C (r) obtained from images?

C (r) is a discrete convolution of the image with itself (N voxels):

C (r) = (I(x)− f2)(I(x + r)− f2)

≈ 1

V

∫
dx (I(x)− f2)(I(x + r)− f2)

≈ 1

N
(I(x)− f2) ∗ (I(x + r)− f2)

≈ 1

N
F−1 ‖ F [I(x)− f2] ‖2

I C (r) is computed from 2D/3D images via FFT and parameters are obtained by
fitting (→ practical)

I Hint: FFT is a python one-liner F(g)→ fftpack.fftn(g)



What about microstructural anisotropy?

C (r) of an anisotropic 3D image is a anisotropic 3D ACF

I SMRT microstructure only deals with 1D functions C (r) (isotropy)
I Different ways to create an isotropoic C (r)

But the IBA phase function requires a 3D Fourier transform anyway? Yes:
I 3D Fourier transforms of isotropic C (r) can be written as 1D Bessel transforms

and computed via a discrete 1D sine transform:

C̃ (k) = 4π

∫ ∞
0

dr r2C (r) j0(kr) (8)

= 4π/k ∆r
N−1∑
l=0

sin (krm)

[
C (rm)

rm

]
︸ ︷︷ ︸

1
2
DST(k)

(9)

I Thats how its done in SMRT autocorrelation class



All SMRT µ-models at a glance: Limiting case of the scattering coefficient

Asymptotic expansion of IBA:
The IBA Scattering coefficient for low density, low frequency has a microstructure
dependent limiting behavior:

κIBA
s =

[
2

3
k40

1

4π
(ε2 − ε1)2

∣∣∣∣ 3ε1
2ε1 + ε2

∣∣∣∣2
]
f2 Ã(0)

Comparison with SMRT:

I κIBA
s “correct” in that limit for all models



Summary

Microstructure in SMRT:

I Employs ACF of snow as required by IBA

I Envisages a library concept, similar to small angle scattering software

I An SMRT snowpack can comprise SMRT layers with different ACFs

I New ACF models can be added by implementing another forms for C (r)/C̃ (k)

I Foreseen but not explored yet: Using measured ACF data directly

I Ongoing research: Details of parameter retrieval by fitting 3D images

Thank you for your attention.
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