Electromagnetic theory

Henning Lowe

WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

22d SMRT Training School, University of Waterloo, 04-06 July 2019

UNIVERSITE @
' Grenoble \

2 Alpes

’)l \a\‘- S
3 Umversnty of
esa *]'Qf @s @ Reading GAMMA REMOTE SENSING




Outline

Introduction

EM theory in a nutshell

EM ingredients in SMRT



Introduction
EM theory in a nutshell

EM ingredients in SMRT



The problem at a glance

SMRT’s main task: Solve RTE

p222) = o (1, 2) V(i 6,2) + 2 [ Py i1, &, 2V (W, &, 2) dY + K (11,6, 2) @ T (2)1

e Coherent
e Maxwell equation
e Electric field

Material element

o Incoherent
o RT equation
e Stokes parameters

Task: Compute
K’ea K’a7 P

for different material elements




The material elements we have to deal with:

Homogeneous: Small sphere: Large sphere:
Sparse spheres: Dense spheres Arbitrary bicontinuous:

W



Always the same task:

Given a random material: €1 (air), e2 (ice), e3 (brine)

Solve the Maxwell equation for the electric field E inside the material element:
k2
(1) V x VE(r) — ia(r)E(r) =0
with vacuum wave number ko = 27v/cp, frequency v, speed of light ¢ and position
dependent permittivity
g1 if risin air
e(r) = exif risinice

g3 if r is in brine

Apparently managable, but nasty at heart...
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Recap I: Terminology, plane waves

The homogeneous case: If € in (1) does not depend on position:

Plane wave solution:
E(r,t) = Egexp(ikk-r — iwt)

with a complex propagation constant k
k = k' + ik"

which is related to the complex index of refraction n
k = nko

which is in turn related to the complex dielectric constant e (or dielectric permittivity)
E=n

All quantities k, n, e are equivalent, complex-valued, material properties
(interchangably used in literature) of the homogeneous medium.



Recap Il: Single sphere scattering

Perfect homogeneity is an idealization valid only for w — 0 (low freq / static). By
increasing the frequency, the plane wave will start to “see” heterogeneities (always
existing) — scattering.

Scattering at a dielectric sphere: Decomposition

ik
(2) E = Ehom“‘EOf(kSaki)M

In this case:

» Distinction between hom background scat

» Distinction between far, mean, local and internal field
Nature of exact solutions are controlled by size (a/\):
» a/\ < 1: Rayleigh, a/\ ~ 1: Mie, a/\ > 1: Geometrical optics



Recap Ill: Single sphere RTE properties

For a single sphere everything follows directly from the exact (Rayleigh) solution, e.g:
Phase function: (units m?)

€2 —¢€1

6,4 - 2
~ a%k*s 2t
p(x) x| o

\J//"‘\ == \'\‘

. . . . . . . \ Pz /\n

(intensity distribution of a dipole, scattering angle x) =

Scattering coefficient: (units m?) p
2 ~(

Er— €1

€2+ 2¢e1 /9 A

(scattered intensity integrated over all directions).
Absorption coefficient: (units m?) )
3¢5 | 3e1

Ky ~ ka°—=% | —————
? €1 | €2 + 2¢1

ke ~ k*a®

from slideplayer/Pat Arnott

(Ohmic dissipation from the internal field integrated over the sphere)



Recap IV: RTE properties and general definitions from coherent waves

Scattering coefficient: ks = 2= [, dQ|f(ks, k;)|?
Total scattered intensity
Phase function p= %|f(ks, k)2
Angular distribution of scattered intensity
Extinction coefficient: ke = *ZZm(f(k;, ki)), ke = 2Zm(kefr)

Intensity attenuation (via optical theorem or the effective propagation constant)

Absorption coefficient: ks = ke — ks, Ka = & [\, Vel |Ein|?

Intensity attenuation due to Ohmic currents

Dielectric permittivity: “ceg = kgff/ko”

Static polarizability (lim,,_o is often implied)

Different roads leading to Rome — unification of different results is tedious.



How approximations for random media are constructed:

Maxwell Eq (1) for E is commonly rewritten

k k
V x VE(r) — ig,,omE(r) = £ () — ehom] E(r)

(@)@

=/

as a perturbation scheme around a homogeneous background epom
and fluctuations [£(r) — pom| as scattering sources.

For complex media:

» the choice of hom is rather arbitrary
» everything relies on proper approximtions for mean, local and internal fields.

Examples:
» Take hom as air (QCA, SFT)
» Compute hom self-consistently (QCA-CP)
» Take hom as “apparent medium” (IBA)
» “Good" choices for hom depend on the microstructure (Rechtsman 2008)



you just have to decrypt it:
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F(QF)Q(T2)Q (7)) + -

Feynman diagrams are introduced in conjunction with those of the pre-
vious section:

(4.2.4)

S| = (GE.70)G (7,7)) (4.2.5)

Summary EM for microwave modeling: Everything is around...

The sum of all strongly connected diagrams in (4.2.13) may be written in
terms of the intensity operator as

T - T

The sum of all strongly and weakly connected diagrams in (4.2.13) containing
one intensity operator is given by

- T

SRR BE T BN

The sum of all weakly connected diagrams in (4.2.13) containing two inten-
sity operators in cascade is given by

i ) ] e e e > i

Continuing with this process, the series for the field correlation can be rewrit-
ten in the form

= - JEEE -
= + [z +E+-«-] (4.2.16)

The key point is that weakly connected diagrams can be reproduced from
strongly connected diagrams on iteration. On summation of (4.2.16), we have

=0k

(4.217)

(Pathways for the solution of Eq (1), taken from Scattering of electromagnetic Waves Pt3, Ch 4)

/e

=
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Effective permittivity: Dielectric

Polder-van Santen (SMRT default)
> self-consistent, effective-medium
» follows (Bruggeman 1935)
> “randomly oriented spheroids”

Maxwell-Garnett (option)

» not self-consistent,

> treats ice grains in air

mixing formulas

1.8

Effective Permittivity

1.2
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(Matzler 1996)

« Dry snow
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The improved Born approximation (IBA)

In IBA the perturbative solution of (1) is considers random two-phase microstructures:

» Admissible microstructures in SMRT: All

IBA scattering amplitude:
focat = f2(1 — R)M(|kq|)Kg sin® x(c2 — £1)” Y?(e1,22)
where

f(1 — fL)M(|kg|) Microstructure term (FT of the autocorrelation function)

k¢ sin? x Scattering geometry
(62 —e1)? Dielectric contrast
Y?2(e1,€2) Improvement term for the internal field

(— compare color-by-color to single sphere Rayleigh scattering)



Phase matrix:

RTE in SMRT considers all Stokes components

! |Ex|? + |Ev|?
Q| _ ||Eul®—|Ev|?
U - 2R6(EHE\/*)
% 2Re(EyEyx)

IBA phase matrix

P11 P2 Piz 0

Py1 Px Py 0
P b b /7 ! =

0 0 0 Pu

can be computed from fecat in the 1-2 frame (details in Picard et al 2018)

> Rayleigh form comes from “isotropic” and “low frequency” used in IBA



Alternative to IBA: The DMRT variants QCA vs QCA-CP

In DMRT (Dense media radiative transfer) the perturbative solution of (1) is
constructed from sphere scattering properties (2):

» Admissible microstructures: only sphere models

» Mainly sticky hard spheres (— microstructure lecture)

Lingo:
» QCA: Quasi-crystalline approximation
» QCA-CP: Quasi-crystalline approximation with coherent potential

Mostly tackled by Tsang's group to get expressions for the effective propagation
constant kg



Comparison of QCA vs QCA-CP

QCA-CP:

2 z
K2 = k2 +n VaZ {1+'ke a3 50}
o T )/ (K 9T 21— ) /(3K2,) (0)

(z= (k22 - k12) n= N/V, v, sphere volume, cf. Eq. 5.3.124 Tsang Ill)

QCA:

3vakZy 2 (kia)3y
kar = ki 140

(v = (e2 — €1)/(e2 + 2¢1), n = N/V, v, sphere volume, cf. Eq. 5.3.114 Tsang Ill)

» Difference: QCA-CP (self consistent background, k. also on the RHS) in
contrast to QCA (air background only k; on the RHS)

» Similarity: Low frequency expansion, involving the structure factor 5(0) of the
sphere packing (related to C(0) — microstructure lecture).



Comparison of IBA and QCA-CP

Scattering coefficient ks:

2 ~
ROA = §kgas¢2fmA(€1,€2,¢2) C(0)
— 2 _ > =
K;QCA Cp _ §k61—a3¢2fQCA CE (81,52,¢2) C(O)
L0 — Eq.(29)
Main messages: 0.95
0.90
» “Slight difference in dielectrics”: B4 vs 3089
FQOA=CP "ratio re: zj‘;
» “No difference in the microstructure”: C(0) 070

08 .0 0.1 0.2 0.3 0.4 0.5
23

Relevant length scale hidden in:

» C(0): Fourier transform of the correlation function at the origin (units [m3]!)



Comparison of IBA and QCA /QCA-CP

Scattering coeff: IBA-SHS, QCA-CP

Brighness temperature: IBA-SHS vs DMRT-QMS (QCA long range)
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Main message: IBA (with SHS) and QCA/QCA-CP (long range) are very similar.



Summary: EM for SMRT

To understand the details of microwave modeling...

» ... some degree of EM is indispensible (=

SMRT...

» ... encapsulates EM whereever possible by cafefully chosen default behavior (£

However...

> ... we decided also not to use defaults on essential things, like microstructure...

Thank you for your attention.
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