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The problem at a glance

SMRT’s main task: Solve RTE

µ∂I(µ,φ,z)
∂z = −κe (µ, φ, z) I (µ, φ, z) + 1

4π

∫∫
4π P(µ, φ;µ′, φ′, z)I (µ′, φ′, z) dΩ′ + κa (µ, φ, z)αT (z)1



The material elements we have to deal with:



Always the same task:

Given a random material: ε1 (air), ε2 (ice), ε3 (brine)

Solve the Maxwell equation for the electric field E inside the material element:

(1) ∇×∇E (r)− k2
0

ε0
ε(r)E (r) = 0

with vacuum wave number k0 = 2πν/c0, frequency ν, speed of light c0 and position
dependent permittivity

ε(r) =


ε1 if r is in air

ε2 if r is in ice

ε3 if r is in brine

.

Apparently managable, but nasty at heart...
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Recap I: Terminology, plane waves

The homogeneous case: If ε in (1) does not depend on position:

Plane wave solution:

E (r , t) = E0 exp(ik k̂ · r − iωt)

with a complex propagation constant k

k = k ′ + ik ′′

which is related to the complex index of refraction n

k = nk0

which is in turn related to the complex dielectric constant ε (or dielectric permittivity)

ε = n2

All quantities k , n, ε are equivalent, complex-valued, material properties
(interchangably used in literature) of the homogeneous medium.



Recap II: Single sphere scattering

Perfect homogeneity is an idealization valid only for ω → 0 (low freq / static). By
increasing the frequency, the plane wave will start to “see” heterogeneities (always
existing) → scattering.

Scattering at a dielectric sphere: Decomposition

E = Ehom + E 0f (ks , k i )
exp ikr

r
(2)

In this case:

I Distinction between hom background scat

I Distinction between far, mean, local and internal field

Nature of exact solutions are controlled by size (a/λ):

I a/λ� 1: Rayleigh, a/λ ≈ 1: Mie, a/λ� 1: Geometrical optics



Recap III: Single sphere RTE properties

For a single sphere everything follows directly from the exact (Rayleigh) solution, e.g:
Phase function: (units m2)

p(χ) ∼ a6k4 sin2 χ

∣∣∣∣ ε2 − ε1

ε2 + 2ε1

∣∣∣∣2
(intensity distribution of a dipole, scattering angle χ)

Scattering coefficient: (units m2)

κs ∼ k4a6

∣∣∣∣ ε2 − ε1

ε2 + 2ε1

∣∣∣∣2
(scattered intensity integrated over all directions).
Absorption coefficient: (units m2)

κa ∼ ka3 ε
′′
2

ε1

∣∣∣∣ 3ε1

ε2 + 2ε1

∣∣∣∣2
(Ohmic dissipation from the internal field integrated over the sphere)

from slideplayer/Pat Arnott



Recap IV: RTE properties and general definitions from coherent waves

Scattering coefficient: κs = 1
4π

∫
4π dΩ|f (ks , k i )|2

Total scattered intensity

Phase function p = 4π
κs
|f (ks , k i )|2

Angular distribution of scattered intensity

Extinction coefficient: κe = 4π
k Im

(
f (k i , k i )

)
, κe = 2Im(keff )

Intensity attenuation (via optical theorem or the effective propagation constant)

Absorption coefficient: κa = κe − κs , κa = ω
2

∫
V dV ε′′int |Eint |2

Intensity attenuation due to Ohmic currents

Dielectric permittivity: “εeff = k2
eff /k

2
0 ”

Static polarizability (limω→0 is often implied)

Different roads leading to Rome → unification of different results is tedious.



How approximations for random media are constructed:

Maxwell Eq (1) for E is commonly rewritten

∇×∇E (r)− k0

ε0
εhomE (r) =

k0

ε0
[ε(r)− εhom]E (r)

as a perturbation scheme around a homogeneous background εhom

and fluctuations [ε(r)− εhom] as scattering sources.

For complex media:

I the choice of hom is rather arbitrary

I everything relies on proper approximtions for mean, local and internal fields.

Examples:

I Take hom as air (QCA, SFT)

I Compute hom self-consistently (QCA-CP)

I Take hom as “apparent medium” (IBA)

I “Good” choices for hom depend on the microstructure (Rechtsman 2008)



Summary EM for microwave modeling: Everything is around...

... you just have to decrypt it:

(Pathways for the solution of Eq (1), taken from Scattering of electromagnetic Waves Pt3, Ch 4)
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Effective permittivity: Dielectric mixing formulas

Polder–van Santen (SMRT default)

I self-consistent, effective-medium

I follows (Bruggeman 1935)

I “randomly oriented spheroids”

Maxwell–Garnett (option)

I not self-consistent,

I treats ice grains in air

(Mätzler 1996)



The improved Born approximation (IBA)

In IBA the perturbative solution of (1) is considers random two-phase microstructures:

I Admissible microstructures in SMRT: All

IBA scattering amplitude:

fscat = f2(1− f2)M(|kd |)k4
0 sin2 χ(ε2 − ε1)2 Y 2(ε1, ε2)

where

f2(1− f2)M(|kd |) Microstructure term (FT of the autocorrelation function)
k4

0 sin2 χ Scattering geometry
(ε2 − ε1)2 Dielectric contrast
Y 2(ε1, ε2) Improvement term for the internal field

(→ compare color-by-color to single sphere Rayleigh scattering)



Phase matrix:

RTE in SMRT considers all Stokes components
I
Q
U
V

 =


|EH|2 + |EV|2
|EH|2 − |EV|2
2Re(EHEV∗)
2Re(EVEH∗)


IBA phase matrix

P(µ, φ, µ′, φ′) =


P11 P12 P13 0
P21 P22 P23 0
P31 P32 P33 0

0 0 0 P44


can be computed from fscat in the 1-2 frame (details in Picard et al 2018)

I Rayleigh form comes from “isotropic” and “low frequency” used in IBA



Alternative to IBA: The DMRT variants QCA vs QCA-CP

In DMRT (Dense media radiative transfer) the perturbative solution of (1) is
constructed from sphere scattering properties (2):

I Admissible microstructures: only sphere models

I Mainly sticky hard spheres (→ microstructure lecture)

Lingo:

I QCA: Quasi-crystalline approximation

I QCA-CP: Quasi-crystalline approximation with coherent potential

Mostly tackled by Tsang’s group to get expressions for the effective propagation
constant keff



Comparison of QCA vs QCA-CP

QCA-CP:

k2
eff = k2

1 + n
vaz

1 + z(1− f2)/(3k2
eff )

{
1 + i

2

9
keff a

3 z

1 + z(1− f2)/(3k2
eff )

S(0)

}
(z = (k2

2 − k2
1 ), n = N/V , va sphere volume, cf. Eq. 5.3.124 Tsang III)

QCA:

k2
eff = k2

1 + n
3vak

2
1y

1− f2y

{
1 + i

2

3

(k1a)3y

1− fy
S(0)

}
(y = (ε2 − ε1)/(ε2 + 2ε1), n = N/V , va sphere volume, cf. Eq. 5.3.114 Tsang III)

I Difference: QCA-CP (self consistent background, keff also on the RHS) in
contrast to QCA (air background only k1 on the RHS)

I Similarity: Low frequency expansion, involving the structure factor S(0) of the
sphere packing (related to C̃ (0)→ microstructure lecture).



Comparison of IBA and QCA-CP

Scattering coefficient κs :

κIBA
s =

2

9
k4

0a
3φ2f

IBA(ε1, ε2, φ2) C̃ (0)

κQCA−CP
s =

2

9
k4

0a
3φ2f

QCA−CP(ε1, ε2, φ2) C̃ (0)

Main messages:

I “Slight difference in dielectrics”: f IBA vs
f QCA−CP, ratio rs :

I “No difference in the microstructure”: C̃ (0)
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Eq. (29)

Relevant length scale hidden in:

I C̃ (0): Fourier transform of the correlation function at the origin (units [m3]!)



Comparison of IBA and QCA /QCA-CP

Scattering coeff: IBA-SHS, QCA-CP
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Brighness temperature: IBA-SHS vs DMRT-QMS (QCA long range)

Main message: IBA (with SHS) and QCA/QCA-CP (long range) are very similar.



Summary: EM for SMRT

To understand the details of microwave modeling...

I ... some degree of EM is indispensible

SMRT...

I ... encapsulates EM whereever possible by cafefully chosen default behavior

However...

I ... we decided also not to use defaults on essential things, like microstructure...

Thank you for your attention.
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